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ABSTRACT 

This thesis investigates whether the National Hurricane Center (NHC) 

operational product for producing probabilistic forecasts of tropical cyclone (TC) 

wind distributions could be further improved by examining the distributions of 

track errors it draws upon to calculate probabilities.  The track spread/skill 

relationship for several global ensemble prediction system forecasts is examined 

as a condition for a description of a full probability distribution function.  The 

2007, 2008, and 2009 NHC official track forecasts are compared to the ensemble 

prediction system model along-, cross-, and forecast-track errors.  Significant 

differences in statistical properties were then identified among the groups to 

determine whether conditioning based on geographic location was warranted.  

Examination of each regional distribution interval suggests that differences in 

distributions existed for along-track and cross-track errors.  Because errors for 

ensemble mean and deterministic forecasts typically have larger mean errors 

and larger variance than official forecast errors, it is unlikely that independent 

error distributions based on these models would refine the PDFs used in the 

probabilistic model.  However, this should be tested with a sensitivity analysis 

and verified with the probability swath.  Overall, conditional formatting suggests 

that the NHC probability product may be improved if the Monte Carlo (MC) model 

would draw from refined distributions of track errors based on TC location.      
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I. INTRODUCTION  

A. MOTIVATION  

Tropical cyclones (TCs) routinely affect society, the economy, the 

environment, and military operations.  Although coastal counties in the 

contiguous United States account for only 17 percent of the total landmass, over 

50 percent of the population lives within this region (NOS 2010). Between 1960 

and 2008, the population of the U.S. coastline increased by 84 percent compared 

to a 69 percent increase in population for the entire country over the same time 

period.  The Gulf of Mexico region alone has increased in population by 150 

percent from 1960 to 2008 (Wilson 2010).  During the next several decades, 

these coastal regions are expected to exponentially increase in population, and 

with these new residents. comes an increase in vulnerability to severe weather 

induced by tropical cyclones.   

During the 2007–2009 hurricane seasons alone, 18 TCs either made 

landfall or came close enough to the U.S. coastline to become an evacuation or 

resource protection concern.  Hurricane Ike, which made landfall in Cuba and the 

southeast Texas coast in September 2008, was the third costliest to hit the U.S. 

and the most substantial in deaths and destruction since Hurricane Katrina in 

2005.  Fortunately, models handled this storm particularly well, with the accuracy 

of most official forecasts significantly better than average (NHC 2010k).  

However, improvements to TC forecast models could have reduced the amount 

of lives lost and property damaged during this storm and could so for storms in 

the future as well.  
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Figure 1.   (a) Waves crash over the Galveston Seawall and the memorial for the 
1900 Galveston Hurricane before the arrival of Ike, (b) House on fire on 

Galveston Island as storm surge waters rise in advance of Ike, (c) 
Devastation on the Bolivar Peninsula due to storm surge from Ike, (d) 

Before and after image of the Bolivar Peninsula depicting the effects of 
storm surge, (e) Debris, boats, and trailers on the southbound lanes of I-
45 heading toward Galveston, and (f) Ships waiting to enter Galveston 

Bay after Hurricane Ike (From NHC 2010k).   

Civilians along the U.S. coast are only part of the requirement for 

increasing tropical cyclone forecast accuracy.  Military operations on land, sea, 

and air depend on accurate forecasts and adequate lead times to protect 

resources and ensure mission completion.  A large number of military 

installations are along the Gulf Coast and Atlantic states from Naval Air Station 

(NAS) Kingsville, TX to NAS Key West, FL, to Portsmouth Naval Shipyard, ME.   

One installation that is highly vulnerable to TCs is Patrick Air Force Base, 

FL, where the 45th Weather Squadron (WS) is in charge of forecasting for 

launches at Kennedy Space Center and the Eastern Range at Cape Canaveral.  

Billions of dollars in equipment, facilities, and flight hardware, as well as the 

personnel and families who support the mission at these two sites, are vulnerable 

to the threats of TCs.  Resource protection decisions made by NASA and Air 
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Force senior leadership rely on critical guidance from the 45th WS on track, 

storm size, and intensity based on NHC forecasts.   

 

Figure 2.   Space shuttle (a) in process of rollback to Vehicle Assembly Building 
pictured in panel (b) (From Astroprof 2010). 

Particularly sensitive to hazardous weather associated with TCs is the 

space shuttle, which requires a rollback to the Vehicle Assembly Building (VAB) 

from the launch pad prior to the onset of sustained 40-knot winds.  Planners 

require at least 48 hours to make a decision on initiating a rollback due to the 

time-consuming process of halting launch operations and transporting the shuttle 

back to safety (Winters 2006).  Forecasters at the 45th Weather Squadron rely on 

probabilistic forecasts to aid planners in making costly decisions such as a 

rollback.  An overly cautious forecast resulting in a false alarm could cost 

hundreds of thousands of dollars and delayed scheduling of launches while a 

missed forecast could result in billions in dollars of damage to equipment or harm 

to personnel (Hauke 2006). 

B. OBJECTIVE 

Improving tropical cyclone track and intensity forecasts has long been the 

focus of the National Hurricane Center (NHC) and other agencies.  In the 1980s, 

a.) b.) 
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the National Weather Service (NWS) issued watch/warning graphical maps that 

included a white cone indicating the area where a TC was expected to verify 90% 

of the time.  Improvements to this procedure by the NHC included strike 

probability forecasts in text format, which indicated the percentage of time a TC 

was expected to pass within 75 n mi to the right or 50 n mi to the left of a given 

point.  A recent improvement is the use of a Monte Carlo (MC) model (DeMaria 

et al. 2009a) to calculate uncertainties in track, intensity, and wind radii.  Hauke 

(2006) re-examined the track error distributions the MC model draws from by 

determining conditional distributions based on forecast confidence.  An improved 

forecast ability resulted from this modification of the NHC operational wind 

probability program (DeMaria et al. 2009b).  

The objective of this thesis is to increase tropical cyclone wind distribution 

forecast accuracy to protect lives and resources of both military and civilian 

entities.  For this thesis, the following hypothesis will be investigated: 

The refinement of current distributions of forecast track errors 
based on conditions derived from a specific parameter such as 
location would improve NHC and JTWC tropical cyclone 
probabilistic wind distribution forecasts.  

This hypothesis has particular relevance to the forecast support generated by the 

45th WS, but civilian and military entities worldwide can aid from improvements to 

TC track forecasts and accurate wind distributions in the warnings. 

This thesis will attempt to further improve TC forecasts by examining the 

distributions of track errors the NHC MC model draws upon to calculate 

probabilities.  If it is possible to use different distributions for different situations, 

the value of the probabilistic output may be increased.  Results of this particular 

study could lead to a reduction of the massive costs of overly cautious 

evacuations when forecast confidence is high, or even save lives by expanding 

the evacuation zone when forecast confidence is low.   
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Background material regarding important concepts related to this thesis is 

provided in Chapter II.  The methodology used for this study is described in 

Chapter III.  The results of the study are presented in Chapter IV, and the 

conclusions and future recommendations are given in Chapter V.   
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II. BACKGROUND 

A. NATIONAL WEATHER SERVICE PROBABILISTIC TROPICAL 
CYCLONE FORECASTS 

The TC forecast cone product (Figure 3) developed over a quarter-century 

ago depicts the NHC’s official track (solid black line for days 1–3 and dashed 

black line for days 45) with a shaded area (white for days 1–3 and stippled white 

for days 4–5) on either side indicating an approximate 67% probability of where 

the TC will likely go based on a sampling of track errors from the past five years 

(NHC 2010n).  The forecast cone gives the general public a basic picture of 

where a TC is likely to go along with current watches and warnings along 

coastlines. This product was periodically updated with new track error statistics 

from its inception in 1983 until 2005, but relatively few changes have occurred in 

the product since then (DeMaria et al. 2009a).    

 

Figure 3.   Hurricane Ike 5-day Watch/Warning/Forecast for 11 September 2008 
(From NHC 2010g).  The symbols are explained in the lower-right box, 

and an approximate distance scale for the cone is given at the top. 
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Since the beginning of the 2006 Atlantic and eastern North Pacific 

hurricane seasons, the NHC has been using tropical cyclone wind speed 

probability text and graphical products (NHC 2010o).  Whereas previous 

forecasts focused more on single-track guidance, the goal of these new products 

has been to paint a more realistic picture of the actual weather that is forecast to 

occur at any given location.  This probabilistic versus deterministic approach to 

forecasting allows decision-makers to better plan for the timing of weather events 

or for the likelihood that they will even occur at all (Wilks 2006). 

Storm-specific text products contain two sections as shown in Figures 4 

and 5.  The Maximum Wind Speed (Intensity) Probability Table contains 

probabilities for maximum wind speeds at standard forecast hours for various 

intensity stages and for the five categories on the Saffir-Simpson Hurricane Scale 

(NHC 2010l).    

 

Figure 4.   Maximum wind speed (intensity) probability table for Hurricane Ike 
Advisory #42 (From NHC 2010m). 
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The wind speed probability table for specific locations in section II (Figure 

5) contains wind speed probabilities for selected coastal and inland cities along 

with each forecast issued by the NHC.  Each wind speed probability text product 

provides probabilities for wind speeds of at least 34 kt (39 mph, tropical storm 

force, 50 kt (58 mph), or 64 kt (74 mph, hurricane force) at each listed location.  

Cumulative probabilities of occurrence and individual period probabilities are 

included in section II, e.g., the overall probability that the stated wind speed will 

occur at each location during the period between hour 0 and each listed forecast 

hour.  Individual period probabilities of onset indicate the chances that the stated 

wind speed will start during each individual period at each location (NHC 2010l). 

 

Figure 5.   Section II of the wind speed probability table for specific locations for 
Hurricane Ike Advisory #42 (From NHC 2010m). 
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Graphical probability products (Figure 6) identify regions where wind 

speeds of at least 34, 50, or 64 kt are expected to occur during cumulative time 

periods from 0–120-h in 12-h increments.  These products represent where 

tropical storm force winds of at least 34 kt (Figure 6a) and hurricane force winds 

of at least 64 kt (Figure 6b) are expected occur for Ike.  Drawing from operational 

forecast center track and intensity error distributions from the past five years, this 

Wind speed Probability Forecast Product (WPFP) uses a Monte Carlo (MC) 

method to generate 1000 realizations, or tracks, relative to a given forecast track 

(DeMaria et al. 2009a). 

 

Figure 6.   (a) Tropical storm force wind speed probabilities and (b) hurricane 
force wind speed probabilities for Ike (2008) (From NHC 2010h and 

2010i).  

These products take the focus off the expected center-line path of the eye 

of the storm and convey to users where winds of a certain magnitude may occur.  

Decision-makers can then make cost-benefit analysis decisions based on the 

probability of winds occurring at specific locations rather than relying on a single 

forecast cone representing one official forecast track.    

B. RECENT TC TRACK AND WIND DISTRIBUTION FORECAST 
IMPROVEMENT STUDIES 

Studies have been conducted on the performance, validity, and potential 

improvements of the NHC Wind Probability Forecast Products (WPFP) 

introduced in 2006.  Hauke (2006) examined distributions of forecast track errors 

a) b)
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conditioned on forecast confidence to determine if significant differences exist in 

distribution characteristics.  He used two predictors to define forecast confidence: 

the Goerss Predicted Consensus Error (GPCE, (Goerss 2000)) and the Global 

Forecast System (GFS) ensemble spread. The distributions of total-, along-, and 

cross-track errors from NHC official forecasts were defined for low, average, and 

high forecast confidence. Distributions of the GFS ensemble mean total-track 

errors were also defined for these three forecast confidence levels. Standard 

hypothesis testing methods were used to examine distribution characteristics. 

Using the GPCE values, Hauke (2006) found significant differences in nearly all 

track error distributions for each level of forecast confidence. The GFS ensemble 

spread did not provide a basis for statistically different distributions.  Hauke 

(2006) concluded that these results suggest the NHC probability model would 

likely be improved if the MC model would draw from distributions of track errors 

based on the GPCE measures of forecast confidence.   

Shafer (2009) performed an objective evaluation of the WPFP 

performance and interpretation of the product for operational application, e.g., 

discerning which forecast probabilities represent low/moderate/high risk for the 

various wind speed and forecast interval categories.  Shafer (2009) focused on 

four hurricane seasons from 2004-2007 and included all storms approaching 

areas of interest centered on Cocoa Beach, FL, Charleston, SC, New Orleans, 

LA, and Corpus Christi, TX.  Verification statistics were computed for each of the 

21 forecast categories of the NHC probability product; three wind speed criteria 

(>= 34 kt, >= 50 kt, and >= 64 kt) and seven forecast time intervals (12, 24, 36, 

48, 72, 96, and 120-hours).  Verifications included use of reliability and 

sharpness diagrams, as well as additional statistics designed to quantitatively 

measure the product performance.  Shafer (2009) concluded that the WPFC 

performed well and within the acceptable range of skill, with the skill of the 

forecast system decreasing as forecast time interval increased.  
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Splitt et al. (2009) revised and expanded the Shafer (2009) study and 

found the NHC product has a tendency to over forecast in some 34 kt cases but 

sometimes under forecasts for the 60 kt cases.  Results from the 50 kt cases 

were mixed but also exhibited a tendency to underforecast during the later 

intervals.   

Majumdar and Finocchio (2009) examined the ability of ensemble 

prediction systems to predict the probability that a tropical cyclone will fall within 

a certain area.  Ensemble forecasts issued by the European Center for Medium-

range Weather Forecasts (ECMWF) and the United Kingdom Meteorological 

Office (UKMET) of up to five days were evaluated for the 2008 Atlantic and 

western North Pacific seasons.  The results demonstrated the potential for 

ensemble prediction systems to enhance probabilistic forecasts, and for the 

THORPEX Interactive Grand Global Ensemble (TIGGE) to be utilized by the 

operational and research communities.  

DeMaria et al. (2009) evaluated performance of the MC probability model 

in the Atlantic and Pacific basins for the 2006–2007 seasons and concluded that 

the model is relatively unbiased, and the forecasts are skillful using a Brier skill 

score and a relative operating characteristic score.  DeMaria et al. (2009) also 

determined that basin-wide error statistics are a current limitation to the model 

and noted that it is possible to estimate the error of a given track forecast based 

upon the spread of a consensus of track models and other information known at 

the time the official forecast is made (Goerss 2007).  

Results of these studies during the past four years indicate the NHC 

WPFP is an effective and beneficial forecast tool and that consensus models 

could enhance the performance of these products.  Furthermore, conditioning on 

certain parameters such as forecast spread (Hauke 2006) may also improve the 

WPFP.  Continued confirmation of the contributions of these products to 

increased effectiveness means continued research to improve these products is 

both worthwhile and necessary.  
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III. METHODOLOGY 

A. DATA 

1. Data Source 

The database for this study is from the 2007, 2008, and 2009 Atlantic 

hurricane seasons.  With 40 named tropical storms and five unnamed tropical 

depressions, 1150 official forecasts were issued by the NHC during these three 

seasons.  Considering there are seven time periods for each forecast (12, 24, 36, 

48, 72, 96, and 120-h), the number of potential track forecast errors is 8050 for 

all three years.  By combining results from all three seasons, it is expected that 

this was a large enough data set to test the hypothesis of this thesis.  

While the 2005 season stands out as the most active on record, 

subsequent seasons have continued to influence civilian and military planners 

and operators.  The 2007 season produced 14 named storms, which included six 

hurricanes, three of which reached major hurricane (Category 3 or higher) status 

(Figure 7).  In addition, two tropical depressions also formed in the Atlantic.  The 

numbers of hurricanes and major hurricanes were near the long-term averages 

for a season, but the number of named storms was slightly above average.  For 

the first time since records began in 1851, two Category 5 hurricanes, Dean and 

Felix, made landfall during the 2007 season (NHC 2010a). 

Dean made landfall as a Category 5 hurricane on the east coast of the 

Yucatan Peninsula and was responsible for about 40 deaths across the 

Caribbean, with the largest tolls in Mexico and Haiti.  Felix made landfall as a 

Category 5 hurricane in Nicaragua and was responsible for 130 deaths in 

Nicaragua and Honduras as well as significant structural damage in Central 

America and the Caribbean Islands (NHC 2010a).     
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Figure 7.   Tracks for the 2007 Atlantic hurricane season.  The track symbols are 
explained in the lower-left box and the storm names are listed in the 

upper-right box.  (From NHC 2010d)  

The 2008 season (Figure 8) presented yet another challenge to 

forecasters, with an above-average 16 named storms in the Atlantic basin.  Eight 

of these storms became hurricanes, and five strengthened into major hurricanes 

(NHC 2010b).  Hurricanes Gustav, Hanna, and Ike were the most notable TCs in 

terms of deaths, with 112, 500, and 102 occurring, respectively.  Major wind and 

storm surge damage occurred during Gustav’s landfall in Cuba, and heavy rains 

in Haiti caused destructive mudslides.  Strong winds, high storm surges, and 

heavy rains also caused an estimated 4.3 billion dollars damage in Louisiana 

(NHC 2010b).  Hanna’s very heavy rainfall in Haiti resulted in an estimated 500 

fatalities, and minor wind and flood damage occurred in the Turks and Caicos 

Islands.  In the U.S., damage was relatively minor, but occurred over a large area 
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and totaled an estimated $160 million dollars (NHC 2010b).  Hurricane Ike killed 

an estimated 74 people in Haiti and two people in the Dominican Republic with 

extensive wind and storm surge damage as it crossed the island of Cuba, where 

seven deaths were reported.  Media reports indicated 19 direct TC-related 

deaths in Texas, Louisiana, and Arkansas.  The remnants of Ike also caused 

wind damage and several dozen TC-indirect deaths across portions of the 

Mississippi and Ohio Valleys (NHC 2010b).     

 

Figure 8.   Tracks for the 2008 Atlantic hurricane season.  The track symbols are 
explained in the lower-left box and the storm names are listed in the 

upper-right box. (From NHC 2010e) 
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While the 2009 season (Figure 9) had fewer storms, several different 

forecast scenarios occurred. The season contained nine named storms, three of 

which became hurricanes, and two of which became major hurricanes.  There 

were also two tropical depressions that did not reach tropical storm strength 

(NHC 2010c). 

 

Figure 9.   Tracks for the 2009 Atlantic hurricane season.  The track symbols are 
explained in the lower-left box and the storm names are listed in the 

upper-right box. (From NHC 2010f) 

The societal and physical impacts caused by each of these TCs during the 

2007, 2008, and 2009 seasons underscore the importance of adequately 

preparing for the potentially overwhelming impacts of TCs.  Perhaps the most 

significant tool for adequate preparation is early and accurate track forecasting 
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with accurate wind distributions to warn people of the potential damage.  This 

database from the 2007, 2008, and 2009 seasons will be used to test the basic 

hypothesis of the thesis.    

2. Data Format 

The data available from the NHC included every official forecast, a 

majority of the model forecasts, and all of the best-track positions of the TCs that 

occurred between 2007 and 2009.  The A-Decks and B-Decks from the 

Automated Tropical Cyclone Forecast (ATCF) system as well as TIGGE 

(THORPEX (The Observing System Research and Predictability Experiment) 

Interactive Grand Global Ensemble) data were used in this thesis.  The A-Decks 

are comprised of all the model and ensemble forecasts available to the NHC 

during the season along with their official (OFC) forecasts.  Information included 

in the A-Decks are the storm number, model, forecast time and period, forecast 

intensity, and forecast position in latitude and longitude (Hauke 2006). 

The B-Decks are the best-track positions of the Atlantic TCs in the 2007, 

2008, and 2009 seasons.  The best-track position is the verifying position of the 

TC after all the information has been evaluated in post-storm analysis.  Included 

in these files are the storm number, date and time, intensity, and verifying 

location in latitude and longitude.  Thus, the A-Decks can be used in conjunction 

with the B-Decks to calculate track forecast error (Hauke 2006).  

Ensemble-based forecast tracks from three operational weather centers, 

United Kingdom Meteorological (UKMET), European Center for Medium-range 

Weather Forecasts (ECMWF), and National Centers for Environmental Prediction 

(NCEP), were obtained from the TIGGE data on the University Corporation for 

Atmospheric Research (UCAR) Computational and Information Systems 

Laboratory (CISL) Web site at http://dss.ucar.edu/datasets/ds330.3/MSS-file-

list.html.  These data are in a format similar to eXtensible Markup Language 

(XML) format, which is then labeled cyclone XML (CXML), and were converted 

for general use in statistical analysis and displays.   
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3. Ensuring Homogeneity of Data 

Track data obtained from the TIGGE Web site were compiled by groups of 

models, individual models, all regions, and individual regions.  For example, 

comparisons of data were by all models (ECMWF+UKMET+GFS), by individual 

model (ECMWF, UKMET, and GFS) and by a combination of models 

(ECMWF+UKMET).  One major challenge in this research was ensuring that all 

data were homogeneous before conditioning and conducting statistical analyses.  

When comparing these large datasets from several different ensemble models, it 

was critical to make sure that similar data were being compared in each group of 

files.  For example, when grouped by all models and all regions, if the GFS did 

not have a control run for a specific date/time in 2007, but the ECMWF and 

UKMET did, then that case was eliminated.  If the Along-Track Errors (ATE) for 

the ECMWF were not available for a certain time period, then they were 

eliminated as well.  Each dataset, by virtue of being homogeneous, contained 

different amounts and types of data compiled from the TIGGE files.  This resulted 

in a dataset that included homogenous model runs (OFC, control (CTL), 

deterministic (DET), and ensemble mean (EMN)) for the same forecast times (0–

120-h), for the same errors (ATE, XTE, FTE), and for each group of models 

and/or regions. 

4. Ensemble Prediction Systems 

Different characteristics among the Ensemble Prediction Systems (EPS) 

used in this study are given in Table 1.  Part of the problem behind ensuring a 

homogeneous dataset is the lack of standardization between ensemble models.  

For example, the ECMWF has 51 members and is run every 12-hours (00 UTC 

and 12 UTC) out to 384 hours, the UKMET has 23 members and is run every 12-

hours (00 UTC and 12 UTC) out to 144 hours with intermediate runs (01 UTC 

and 13 UTC) out to 48 hours, and the GFS has 21 members and is run every 6 

hours (00 UTC, 06 UTC, 12 UTC, 18 UTC) out to 384 hours.  For this research, 

the 00Z and 12Z runs were used in all cases.  In each of these EPSs, the control 
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(CTL) model is typically the higher resolution deterministic (DET) model from that 

center, and then an even number ensemble model forecasts, at lower resolution 

are made from perturbed initial conditions.  

Table 1.   Comparison of Ensemble Prediction Systems (EPS) examined in this 
study. 

EPS Members Frequency Duration 
ECMWF 51 00 UTC, 12 UTC 384 h 

UKMET 23 UTC (intermediate), 12  UTC, 13 UTC 
(intermediate) 144 h (48 h) 

GFS 21 00 UTC, 06UTC, 12 UTC, 18 UTC 384 
 

5. Forecast Position Errors 

The three types of errors (along-, cross-, and forecast-track) examined in 

this thesis are shown in Figure 10.  The track error of the forecast is determined 

from the verifying best-track position.  The forecast track error (FTE) is the great 

circle distance between the best-track and forecast positions.  In addition, the 

cross-track error (XTE) and along-track error (ATE) are defined as illustrated in 

Figure 10.   

 

Figure 10.   Definition of cross-track error (XTE), along-track error (ATE), and 
forecast track error (FTE).  In this example, the forecast position is ahead 
of and to the right of the verifying best track position.  Therefore, the XTE 
is positive (to the right of the best track) and the ATE is positive (ahead or 

faster than the best track) (From Tsui and Miller 1988).  
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6. Conditioning by Region 

Once all ensemble and official track forecast data were combined into 

homogeneous files, the procedure was then to begin conditioning these data 

based on certain parameters.  Because location was the primary parameter to 

explore, the North Atlantic Basin was divided into six regions based on latitude 

and longitude (Figure 11). 

 

Figure 11.   Geographic regions for conditioning Ensemble Prediction System 
(EPS) TC track errors and spread. 

B. STATISTICAL ANALYSIS METHODS 

1. Testing for Differences in Mean 

While analyses in this thesis are similar in scope to that of Hauke (2006), 

several differences will be described. In Figure 12, three distributions are 

examined.  The two distributions in the low variability case (bottom row) have 

very little overlap and thus are significantly different.  The distribution in the 

medium variability case (top row) has some overlap and is only slightly different.  

In the high variability case (middle row), it becomes more difficult to distinguish 

the two populations. 
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In this thesis, the first objective is to search for significant differences 

among the track forecast error distributions when conditioned on relative physical 

parameters.  If only small differences exist as demonstrated by the high 

variability case in Figure 12, then there will likely be little improvement in the MC 

model by including that physical parameter.  This is because the distributions are 

similar, and using them independently will not change the probability output 

(Hauke 2006).  However, it is expected that construction of a conditional 

probability distribution when significant differences exist in the distributions that 

have low variability as in Figure 12 will then result in better discrimination in an 

MC model.   

 

Figure 12.   Three pairs of distributions with the same mean (From Trochim 2010). 

The objective method to determine if samples from two populations are 

significantly different is the t-test statistic (T) (Wilks 2006), which is a function of 

the differences between the two sample means and takes into account the sizes 

and variances of the distributions.  The t-test statistic is defined as 
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  (1) 

where  and  are the means of the two samples,  =  –  = 0 is the 

hypothesized difference between the two means. In Equation (1),  and  are 

the standard deviations of the two samples, and  and  are the numbers of 

members in each sample.  The t-statistic is evaluated using a .05 percent 

confidence level, which means the test will be in error no more than five out of 

100 times (Wilks 2006). 

The null hypothesis for this test is that the two means are the same (  – 

 = 0) (Figure 13).  If the null hypothesis is true, then the t-statistic will fall in the 

acceptance region of the t-distribution (t-statistic < t-critical).  If the null 

hypothesis is false, then the t-statistic will fall in the critical region of the t-

distribution (t-statistic > t-critical). 

 

Figure 13.   Hypothesis test for differences in the means of two distributions.  
(From Wadsworth 2010). 
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As indicated in Figure 12, the means of two samples may be the same 

while the variances are different.  This situation may apply with cross- and along-

track forecast errors since the errors are both positive and negative and thus 

tend to cancel at times, which may then lead to very small differences between 

the distributions.  However, the means of the distributions can be used as an 

indicator of the skewness.  Using different distributions that have the same mean 

but different variances also makes them separable and may also improve the MC 

product (Hauke 2006).   

2. Histograms and Probability Distribution Function (PDF) Plots 

Quantitative results of this thesis are presented primarily in the form of 

histograms and probability distribution functions.  The purpose of these visual 

representations of the data is to clearly and accurately convey useful information 

as a result of comprehensive data analysis.  

Several histograms and probability distribution functions are presented in 

this thesis to provide useful data summaries that convey the following 

information:  the general shape of the frequency distribution (normal, chi-square, 

etc.), symmetry of the distribution or whether it is skewed, and modality 

(unimodal, bimodal, or multimodal).  Frequency distribution histograms can be 

converted to a probability distribution using several methods.  Dividing the tally in 

each group by the total number of data points defines the relative frequency. 

Then, maximum likelihood estimates (Wilks 2006) can be used to define the 

probability distribution function for a specific distribution form.  The shape of the 

distribution conveys important information such as the probability distribution of 

the data (Netmba 2010).  In this thesis, histograms and PDFs are used to 

determine the statistical character of forecast errors for each forecast interval. 
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IV. ANALYSIS AND RESULTS 

A. INTRODUCTION 

The goal of this thesis is to demonstrate the likely benefit to the probability 

model based on conditioning the track error distributions from which the MC 

model draws. The primary conditioning factor to be examined is TC location at 

the time a forecast is issued.  If a storm is located in a particular region then it 

may be beneficial for the probabilistic model to draw from historic track errors 

that were produced in the same region.   

In addition to geographic regions, error distributions from specific model 

products are examined relative to the error distribution of the official forecast 

(OFC).  For each EPS, the errors in ensemble mean (EMN) forecast are 

compared to the OFC track errors.  The control forecast (CTL) track errors were 

not available for all models at all times.  Therefore, track errors for the CTL 

forecasts are not used in the study.  However, the deterministic (DET) model 

forecast track errors are compared to the OFC and EMN forecast track errors.  

As defined in Chapter III, the homogeneous data are grouped based on model 

(all models, ECMWF, UKMET, ECMWF+UKMET, and GFS), by region (GOM, 

ECS, SBA, WCB, ECB, and MDR as in Figure 11), by error (ATE, XTE, and 

FTE), and by forecast interval (12, 24, 36, 48, 60, 72, 96, and 120-h).   

To determine whether conditioning based on geographic location was 

warranted, the homogeneous data groupings are examined to identify significant 

differences in statistical characteristics among the groups. The mean and 

standard deviations of ATEs, XTEs, and FTEs for EMN, DET, OFC, and CTL 

members of each data group are computed.  Tests are then conducted to 

determine statistical differences among these errors in model and geographic 

groups.  For combinations of model groups and geographic regions, the EMN 

errors were compared to OFC errors, the DET errors were compared to OFC 
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errors, and the EMN errors were compared to the DET errors.  The probability 

distribution functions (PDFs) defined by ATEs and XTEs of EMN, OFC, and DET 

for all regions and all models were then created.   

B. STATISTICAL SIGNIFICANCE BY MODEL AND REGION 

Bar charts are used to compare the geographic regions, model groups, 

and errors.  The abscissa represents the forecast interval from 0-120 hours and 

the ordinate represents statistical significance.  A positive oriented bar identifies 

positive differences between respective errors that are considered to be 

statistically significant.  A negative oriented bar identifies a negative difference 

that is statistically significant.   

1. Analysis and Results 

For the entire data set of all models and all regions, the ATEs, XTEs, and 

FTEs of the EMN are significantly greater than the OFC ATEs, XTEs, and FTEs 

for most forecast intervals at a significance level of 0.05 (Figure 14).  The ATEs, 

XTEs, and FTEs of the DET are also significantly greater than OFC ATEs, XTEs, 

and FTEs for several forecast intervals.  The smaller OFC forecast errors than 

both the EMN and DET forecasts indicates the NHC forecasters are adding value 

to their guidance.  The ATEs and FTEs of the EMN were greater than ATEs and 

FTEs of the higher resolution DET for shorter range forecasts between 12–60-h. 

Because one or more track forecast error types are significantly greater 

than the OFC forecast, it is worthwhile to investigate if any specific geographic 

region(s) contributes most to these errors (Figure 15).  The significantly larger 

EMN errors than the OFC errors at 48-h and beyond in the All Regions group 

(Figure 14) seem to be due to errors from the ECB (Figure 15e), MDR (Figure 

15f), ECS (Figure 15b), and WCB (Figure 15d).  Significantly greater EMN errors 

than OFC errors do exist in the GOM region, but primarily at forecast intervals 

between 12–60-h.  Therefore, some evidence is found that the forecast track 

errors from the combination of all models EMN in different regions may contain 

additional information from only the OFC track errors. 
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In regional comparisons of the All Models DET and OFC track errors 

(Figure 14 middle panel), much more variability exists in that the significant 

differences in Figure 14 mainly come from the main development region (Figure 

15f, middle panel).  Similarly, the differences between the All Models DET and 

EMN track errors over All Regions (Figure 14, bottom panel), are mainly from the 

main development region (Figure 15f, bottom panel).   

 

Figure 14.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 
FTE (see designations on the right side of the top panel) for the sample of 

all models and all regions.  EMN and OFC errors (top), DET and OFC 
(middle), and DET and EMN (bottom) are given as a function of forecast 

interval (h).  The positive (negative) bar values identify statistically 
significant differences as defined by the labels in each panel. 
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Figure 15.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the sample of 
all models in (a) the Gulf of Mexico, (b) the east coast region, (c) the 

subtropical Atlantic, (d) the western Caribbean, (e) the eastern Caribbean, 
(f) and the main development region.  EMN and OFC errors (top), DET 

and OFC (middle), and DET and EMN (bottom) are given as a function of 
forecast interval (h).  The positive (negative) bar values identify statistically 

significant differences as defined by the labels in each panel.  

c) d) 

a) b) 
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Figure 15 Continued. 

For the combination of ECMWF and UKMET models, the EMN XTEs and 

FTEs in the WCB contribute most to All Models, All Regions errors in Figure 14, 

while few errors from the SBA contribute.  The EMN FTEs and ATEs in the ECB 

and MDR contribute significantly to All Models, All Regions EMN errors (Figure 

15), and DET ATEs, XTEs, and FTEs contribute to All Models, All Regions DET 

errors.    

Because forecast availability for the GPS ensemble prediction system is 

less than for the ECMWF and UKMET, a second group was created by 

combining the ECMWF and UKMET models only (Figure 16).  A similar pattern is 

evident in that the EMN FTEs are significantly larger than the OFC errors for 

forecast intervals greater than 48-h (Figure 16a, top panel).  The DET track 

errors are also significantly greater than OFC track errors for intervals greater 

than 48-h (Figure 16, middle panel).  There are not many significant differences 

between EMN and DET forecast errors (Figure 16a, bottom panel).   

Whereas it is clear that the majority of the significant error differences are 

in either the ATEs or FTEs, only rarely are significant differences found in the 

EMN, DET, and OFC XTEs.  Consequently, the paths of the TCs are generally 

predicted without a bias, and the ATE is the major source of the FTE.  

e) f) 
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Figure 16.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the 
combination of ECMWF and UKMET in (a) all regions, (b) the east coast 

region, and (c) the main development region.  EMN and OFC errors (top), 
DET and OFC (middle), and DET and EMN (bottom) are given as a 

function of forecast interval (h).  The positive (negative) bar values identify 
statistically significant differences as defined by the labels in each panel.  

 

 

c) 

a) 

b) 
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Comparison of the combined ECMWF and UKMET model forecasts for 

individual regions relative to all regions (Figure 16a) indicates that the significant 

errors are mainly from the ECS region (Figure 16b) and MDR (Figure 16c).  

Other regions (not shown) do not contain consistent track error distribution 

differences from all regions.  

Individual model forecasts are also examined for all regions and then 

compared to errors in each region.  For the ECMWF forecasts only, significant 

differences exist between the EMN and the OFC errors at nearly every forecast 

interval for all regions (Figure 17a, top panel).  Again, the significantly larger 

EMN errors are typically in the ATE and FTE values.  Examination of the errors in 

the other regions (not shown) indicates that the majority of the significant EMN 

differences compared to OFC errors are for the eastern Caribbean (Figure 17b, 

top panel).   

The ECMWF DET errors also are significantly larger than the OFC errors 

for most forecast intervals (Figure 17a, middle panel).  However, these error 

differences do include XTE at shorter forecast intervals.  Furthermore, no one 

region contributes to the differences defined in the All Regions group (not 

shown).  It is noteworthy that no significant differences in even the XTEs exist 

between the ECMWF DET and the EMN in the ECB (Figure 17b, bottom panel).  
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Figure 17.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the ECMWF 
in (a) all regions and (b) the eastern Caribbean. EMN and OFC errors 

(top), DET and OFC (middle), and DET and EMN (bottom) are given as a 
function of forecast interval (h).  The positive (negative) bar values identify 
statistically significant differences as defined by the labels in each panel.  

Of all models, the UKMET had the fewest number of EMN and DET track 

errors (Figure 18a) that were significantly greater than OFC track errors when all 

regions are combined.  However, the EMN track forecast errors over the main 

development region are significantly greater than the OFC errors (Figure 18b, top 

panel).  Also, the significant differences are only FTEs and ATEs, so again the 

path is consistently forecast, but the spread along the path contributes to the 

errors.  There are also some significantly larger DET errors than OFC errors in 

the main development region (Figure 18b, middle panel). 

 

b) a) 



 33

 
Figure 18.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the UKMET in 
(a) all regions and (b) main development region. EMN and OFC errors 

(top), DET and OFC (middle), and DET and EMN (bottom) are given as a 
function of forecast interval (h).  The positive (negative) bar values identify 
statistically significant differences as defined by the labels in each panel. 

At almost all forecast intervals, the GFS EMN XTEs and FTEs were 

significantly greater than the OFC and DET errors for all regions (Figure 19a).  

The consistently larger GFS EMN XTEs and FTEs than the GFS DET errors 

(Figure 19a, bottom panel) indicates a significant degradation of the EMN tracks 

relative to the higher resolution DET model tracks.  These errors primarily 

originated from the MDR (Figure 19b).  Other regions (not shown) did not contain 

significantly large errors relative to All Regions.     

 

a) b) 
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Figure 19.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the GFS in (a) 
all regions and (b) main development region. EMN and OFC errors (top), 

DET and OFC (middle), and DET and EMN (bottom) are given as a 
function of forecast interval (h).  The positive (negative) bar values identify 
statistically significant differences as defined by the labels in each panel. 

2. Summary 

As expected, EMN track errors were frequently larger than OFC track 

errors for all regions and all models.  The EMN track errors were frequently larger 

than DET errors, and each of these was greater than OFC track errors.  

The individual regions that contributed the most significant EMN and DET 

errors compared to the OFC errors for the All Models group were the ECB, MDR, 

and ECS.  This error characteristic was also true for the ECMWF+UKMET group.  

For the ECMWF, the ECB region contributed the most to the error differences 

with the OFC forecasts.  The MDR had the largest contribution to the UKMET 

forecast error differences and also to the GFS forecast error differences.   

A climatologically typical TC track from the Cape Verde Islands transits 

westward through the entire MDR, crosses part of the ECB, and then recurves 

northward and eastward through the ECS.  The high frequency of storms during 

the 2007-2009 Atlantic hurricane seasons that moved along this typical TC track 

a) b) 
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was most likely the reason these three regions observed the most forecast 

errors.  Fewer cases were available in the GOM, WCB, and SBA as fewer storms 

crossed these regions.  However, the consistent contribution from MDR, ECB, 

and ECS regions in defining significant differences with OFC errors suggest that 

error distributions associated with these regions may be useful in defining 

probability distributions for tropical cyclone forecasts.       

C. PROBABILITY DENSITY FUNCTIONS BY MODEL AND REGION 

Based on the results of significant differences among model ensembles, 

deterministic, and official forecasts over all regions and individual regions, the 

probability distribution functions (PDF) of the forecast error distributions are 

analyzed.  Significant differences in the PDF characteristics would imply that the 

probability model could be impacted by the use of these distributions.  Because 

the majority of significant differences in Section B are in the ATEs, these errors 

are examined first.  The PDFs of FTEs are not examined since only ATEs and 

XTEs are used in the probabilistic model.  Only selected forecast intervals will be 

described in this chapter.  The characteristics for the remaining forecast intervals 

are available in the Appendix.      

1. ATE Probability Distribution Functions 

Comparison of the EMN and OFC 12-h ATEs (Figure 20) indicates that 

the EMN error distribution in the ECB region has a much larger variance than the 

error distribution for the All Regions.  Therefore, the EMN forecasts over the ECB 

have significantly different distributions than the ATEs in other regions with a 

standard deviation of 50 km for the All Regions (Figure 20a, box).  By contrast, 

the probability distribution functions for the 12-h OFC forecasts (Figure 20b) in 

the All Regions and the individual regions are similar, with standard deviations 

ranging from 30 km to 59 km, which is again associated with the ECB region.   
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Figure 20.   Normal probability distribution functions for the 12-h forecast ATEs by 
the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 

positive or negative ATEs in kilometers, and the ordinate represents 
frequency of occurrence.  Curves are color-coded by region (see box) with 

the mean, standard deviation, and number of members shown in the 
legend.  

The PDFs for the 48-h EMN and OFC forecast ATEs are similar to the 12-

h PDFs except that the magnitudes are larger (Figure 21).  Notice the distinctly 

larger spread in the ECB region (Figure 21a) relative to the All Regions and the 

other regions.  For these 48-h forecasts, the standard deviation in the ECB is 225 

n mi versus 136 n mi for the All Regions and a range from 76 km to 150 km for 

the other regions.  Whereas the PDFs for the 48-h OFC forecasts in the All 

Regions and all other regions besides the ECB region are quite similar (Figure 

21b), the OFC PDF for the ECB region is distinct.  Indeed, the OFC standard 

deviation in this region is almost the same as for the 48-h EMN (209 km versus 

225 km).   

a) b) 
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Figure 21.   Normal probability distribution functions for the 48-h forecast ATEs by 
the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 

positive or negative ATEs in kilometers, and the ordinate represents 
frequency of occurrence.  Curves are color-coded by region (see box) with 

the mean, standard deviation, and number of members shown in the 
legend.    

Beyond 48-h, the PDFs have larger spreads and increases in standard 

deviations of the EMN and the OFC ATEs (Figure 22).  The ECS region has 

significantly less variability than the All Regions PDF of OFC ATEs (Figure 22b).  

Note the large EMN spread in the GOM.  This could be a result of the usually 

slow pace of storms in this region and the associated difficulty in forecasting the 

path at the +84-h forecast interval.   

a) b) 



 38

 

Figure 22.   Normal probability distribution functions for the 84-h forecast ATEs by 
the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 

positive or negative ATEs in kilometers, and the ordinate represents 
frequency of occurrence.  Curves are color-coded by region (see box) with 

the mean, standard deviation, and number of members shown in the 
legend.    

At +120-h, the ECB, MDR, and ECS regions have smaller standard 

deviations about the EPS mean ATE than for the All Regions.  Indeed, the ECB 

and MDR have ATE standard deviations that are less than half of the standard 

deviation of the All Region ATEs.  These small standard deviations indicate a 

small variability in the storm translation speeds in these regions even at five 

days, which probably arises due to the African Easterly waves having consistent, 

predictable paths and translation speeds.  The ECS and MDR regions also have 

significantly less variability than the all regions PDF of OFC ATE errors (Figure 

23b).  Recall that these regions also contributed most to the significantly larger 

EMN track errors compared to the OFC track errors.   

a) b) 
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While the results of the t-test analyses for the all models and all regions 

groups in Chapter IV.B indicates significant differences between EMN and OFC 

beyond 48-h, the PDFs of ATEs do not become significantly 

different in terms of variance until 84-h and beyond.  Therefore, it appears that 

conditioning for the ATE in these regions for the all model group would not 

improve the MC probability model until beyond the 72-h forecast interval.    

 

Figure 23.   Normal probability distribution functions for the 120-h forecast ATEs by 
the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 

positive or negative ATEs in kilometers, and the ordinate represents 
frequency of occurrence.  Curves are color-coded by region (see box) with 

the mean, standard deviation, and number of members shown in the 
legend.    

2. XTE Probability Distribution Functions 

Not many significant differences were found between the mean EMN and 

OFC XTEs (Figures 14 and 15) as were found between the EMN and OFC ATEs.  

For example, recall that the variance of the EMN XTE All Regions group at 24-h 

is larger than the All Regions group of the OFC XTE distribution (Figure 14).  

However, some differences were found in the PDF characteristics for the EMN 

a) b)
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and OFC XTEs.  It is clear in Figure 24a that the PDFs associated with XTEs in 

the 24-h EMN forecasts of the All Models groups begins to vary much more than 

the OFC XTE distributions (Figure 24b).  However, the variance in the EMN XTE 

PDF for the ECB region does not increase as rapidly with forecast interval as the 

variance in ATE (Figure 20a).   

By 120-h, many of the probability distribution functions of the OFC XTEs 

for several of the individual regions have less variance than the All Regions 

group (Figure 25b).  However, the main contribution to the larger variance in the 

OFC XTE All Regions group comes from the MDR, which has a larger negative 

bias and a larger variance.  The PDFs of EMN XTEs at 120-h have means and 

variances that are quite similar (Figure 25a), even though the mean differences 

between EMN XTE and OFC XTE were not significantly different for the All 

Regions group (Figure 14) or for any regional group (Figure 15).  The variances 

are significantly larger for the ECB and ECS region. 

 

Figure 24.   Normal probability distribution functions for the 24-h forecast XTEs by 
the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 

positive or negative XTEs in kilometers, and the ordinate represents 
frequency of occurrence.  Curves are color-coded by region (see box) with 

the mean, standard deviation, and number of members shown in the 
legend.    

a) b) 
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The GOM region was the only region in which the OFC XTE variance was 

significantly larger than the EMN variance (Figure 24).  The GOM was the only 

region in which the OFC XTE variance was larger than the variance in All 

Regions.   

 
Figure 25.   Normal probability distribution functions for the 120-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

3. Testing for Sensitivity 

Testing the sensitivity of various error distribution characteristics is 

necessary to determine which distributions improve the Wind Speed Probability 

Forecast Products created by DeMaria et al. (2009).  The test product should be 

similar in framework, but modified slightly.  Error distributions would be defined 

that are associated with ATEs and XTEs of for selected forecast combinations 

and regions, such as the official tracks, All Models, ECMWF and UKMO 

combined, and ECMWF, UKMO, and GFS individually.  Differences in 

a) b) 
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probabilities could be evaluated among groups and regions, and these 

distributions could be evaluated to fit various functional forms.  Differences 

related to distribution characteristics could then be tested, and once the “best” fit 

is defined, then serial correlation could be identified.  The next step would be to 

evaluate differences among groups and regions and define residual distributions 

for sampling.  Once a sampling technique is determined, then intensity estimates 

via linear model fit could be applied, and serial correlation and track-intensity 

dependence could be accounted for.  The last step would be to apply the wind 

distribution model and define probabilities. 

4. Summary 

Analysis of the PDF characteristics associated with the All Models group 

has resulted in identification some basic differences among the distributions of 

XTEs and ATEs of the EMN and OFC track forecasts.  As a first approximation, 

the normal distribution has been fit to the two error measures.  This choice is 

based on analysis of DeMaria et al. (2009) and Majumdar and Finnochio (2010) 

in which normal distributions were used to define ATE and XTE characteristics 

associated with OFC and EMN forecasts.  The All Models group was examined 

because this group provided the most robust comparison of ensemble systems to 

compare with the OFC forecasts (Figures 14 and 15).  Furthermore, it was 

anticipated that a combination of models would more likely yield a normal 

distribution of ATEs and FTEs.   

As defined by DeMaria et al. (2009), the character of the error distribution 

from which the Monte Carlo method samples will determine the probability swath 

for distribution of threshold wind values such as tropical storm/gale or hurricane 

force.  As Hauke (2006) showed, conditioning on expected forecast difficulty 

produced distributions such that the variability decreased with increased forecast 

confidence. Therefore, the probability swath was shown to be narrower in high-

confidence forecasts.  The hypothesis being investigated in this thesis is that 

additional refinement of key probability distributions could be gained by 
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conditioning on the individual six regions.  The distributions defined in Figures 

14-26 do demonstrate that statistically significant differences exist between EMN, 

DET, and OFC track forecasts.  In most cases, the EMN mean ATEs and XTEs 

are significantly larger than OFC errors.  Furthermore, the DET errors are larger 

than the OFC errors but less than the EMN errors.  Therefore, it appears that 

using forecast track error distributions based on EMN or DET forecasts would not 

sharpen the distributions from which the Monte Carlo sampling is drawn.   

Additionally, the normal PDFs of EMN ATE and XTE, and OFC ATE and 

XTE do indicate a large variation in variance for the distributions.  Distributions 

defined by the DET errors (not shown) are similar to those for the EMN errors.  

To determine if conditioning by region would refine the PDFs for the MC 

probability model, the variances between OFC and EMN error distributions are 

examined.  The F-test for equal variances between two probability distributions 

was used to examine whether differences in variances exhibited in Figures 20–

25 are significantly different.  In particular, it is important to identify which regions 

have error distributions that have significantly less variance than the All Regions 

group for the OFC and EMN forecasts.   

Comparison of variances among OFC forecast XTE distributions from 

individual regions indicates significantly less variance in forecast distributions 

from the WCB and ECS regions compared to the All Regions group (Table 2).  A 

significant difference in variance is not found between the MDR and All Regions 

distributions or the ECB and all region distributions.  There is less variance in the 

GOM XTE distribution than the OFC XTE distribution, but this is only true for 

short-range forecasts (Table 2).  At longer forecast intervals, the OFC XTE 

variance for all regions is less than that for the GOM region only.   
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Table 2.   Results of the F-test for the differences in variances between the All 
Models/All Regions group and All Models/individual regions groups of 
OFC XTEs.  A shaded (hatched) cell indicates that the variances are 

significantly different and the All Regions group variance is less (more) 
than the individual region variance. 

 
 
 

Table 3.   Results of the F-test for the differences in variances between the All 
Models/All Regions group and All Models/individual regions groups of 
OFC ATEs.  A shaded (hatched) cell indicates that the variances are 

significantly different and the All Regions group variance is less (more) 
than the individual region variance. 
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The character of the variance in ATE PDFs (Table 3) is fundamentally 

different from the XTE distribution variances (Table 2).  The distributions 

conditioned on individual regions have smaller variances in ATEs at short 

forecast ranges over the GOM and WCB regions.  At longer forecast intervals, 

the variances from distributions defined from the MDR and ECS regions become 

less than the OFC ATE errors from the All Regions, which is currently used in the 

MC probability model (DeMaria et al. 2009). 

The collections of XTEs and ATEs for the All Regions group do not fit a 

normal distribution at any forecast interval (first columns in Tables 4 and 5, 

respectively.  For individual regions and XTEs, only shorter range forecasts over 

the ECS are significantly non-normal.  However, nearly all distributions of ATEs 

are non-normal (Figure 26).   

It is possible that the relatively small dataset limited by the TIGGE data 

availability causes the error distributions to be non-normal.  However, 

examination of other distributions of ATEs, e.g., Figure 26a, indicates that most 

contain extreme values.  Therefore, an extreme-value type of distribution may be 

more appropriate for fitting to forecast track errors.  
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Table 4.   Results of the chi-square tests for goodness of fit of the OFC XTEs to a 
normal distribution. Shaded cells define forecast interval and region for 

which the hypothesis of a good fit to a normal distribution is rejected at the 
0.05 level.  Cells with vertical lines define forecast intervals and regions for 
which the data sample was too small to meet cell population requirements 

for the chi-square test.  

 

 

Table 5.   Results of the chi-square tests for goodness of fit of the OFC ATEs to a 
normal distribution. Shaded cells define forecast interval and region for 

which the hypothesis of a good fit to a normal distribution is rejected at the 
0.05 level.  Cells with vertical lines define forecast intervals and regions for 
which the data sample was too small to meet cell population requirements 

for the chi-square test. 
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Figure 26.   Distribution of ATEs (a) and XTEs (b) for all models, all regions at the 
+84-h forecast.   

It is important to examine how appropriate a normal distribution as a base 

PDF is for use in probability models.  As an example, a normal PDF is fit to 84-h 

EMN ATE and XTE errors and displayed in Figure 26.  It is clear that the 

distribution of ATE errors does not fit a normal distribution while the distribution of 

XTEs seems to fit the normal distribution quite well.  To examine the use of the 

normal distribution for OFC track error distributions defined above in the variance 

comparison, a chi-square goodness of fit test is applied to the normal PDFs and 

OFC XTE and ATE data (Tables 4–5).  

 

 

 

a) b) 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This study was the first step in an investigation of whether the MC 

probability model would be improved by conditioning the TC track error 

distribution on storm location rather than on basin-wide error statistics. If it is 

possible to use different track error distributions for different storm locations, the 

probability wind output may have more utility to decision makers.  The goal is to 

then improve TC track forecasts that ultimately result in decreasing societal and 

physical impacts to both civilian and military entities.    

The initial step was to test three seasons of ensemble model track error 

distributions (EMN and DET) to see if they are significantly different from the 

official (OFC) track error distributions.  The homogeneous data were grouped 

based on individual models, groups of models, and by region.  Significant 

differences in statistical characteristics were then identified among the groups to 

determine whether conditioning based on geographic location was warranted.  

Once the means and standard deviations of all errors for each group of data 

were computed, tests were then conducted to determine statistical differences 

among the error distributions in model and geographic groups.  The EMN, OFC, 

and DET errors were intercompared for combinations of model groups and 

geographic regions. 

Examination of each regional distribution for each forecast interval 

suggests that differences in distributions existed for ATEs and XTEs.  However, 

these differences vary by forecast interval and regions.  Because errors for EMN 

and DET forecasts typically have larger mean errors and larger variances than 

OFC forecast errors, it is unlikely that independent error distributions based on 

these models would refine the PDFs used in the probabilistic model.  However, 

this should be tested with a sensitivity analysis and verified with a probability 

swath.  It is possible that a combination of PDFs from the OFC and the EMN 
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forecasts would provide a more complete probabilistic representation of the wind 

distributions.  Although no consistent patterns were found with respect to 

variance comparisons between ATE and XTE OFC error distributions over all 

regions and individual regions, enough evidence was presented that warrants 

testing of conditional distributions based on region in the MC probability model. 

Finally, the lack of fit to a normal distribution associated with most of the 

probability distributions suggests that alternative distribution functions may 

improve the probability model.  However, the relatively small sample of only three 

years available to this study may adversely impact the tests of distribution fit.  

Additional sensitivity testing in a MC probability model is required to determine 

how these distributions would impact the WPFP.     

Based on the results of this study, it is expected that the refinement of 

current distributions of forecast track errors based on conditions derived from 

specific parameters such as ensemble spread or storm location should improve 

NHC tropical cyclone probabilistic wind distribution forecasts.  

B. RECOMMENDATIONS 

The next step should be to change the MC model code to draw from 

along-track and cross-track error distributions based on region instead of just one 

error distribution for all track forecast situations and regions.  The model should 

then be tested to see if the probabilistic wind distribution accuracy is significantly 

improved.  If so, the operational MC model should be modified to include these 

additional parameters.   

Future research should concentrate on other factors that may influence 

historic track error distributions.  Some of these factors may be steering flow 

characteristics, storm intensity, and weather regime of the eastern U.S.  

Historical TIGGE data are also available for the western North Pacific basin, and 

similar parameters could be explored for a multitude of seasons and storms. 
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APPENDIX.  DET/EMN/OFC COMPARISONS 

 
 

 
Figure 27.   Statistically significant (at a level of 0.05) differences in ATE, XTE, and 

FTE (see designations on the right side of the top panel) for the GFS in (a) 
Gulf of Mexico and (b) east coast, (c) subtropical Atlantic, (d) western 

Caribbean, and (e) eastern Caribbean.  EMN and OFC errors (top), DET 
and OFC (middle), and DET and EMN (bottom) are given as a function of 

forecast interval (h).  The positive (negative) bar values identify statistically 
significant differences as defined by the labels in each panel. 

 

a) b)

c) d) 
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Figure 27 Continued.  Statistically significant (at a level of 0.05) 

differences in ATE, XTE, and FTE (see designations on the right side of the top 
panel) for the GFS in the (e) eastern Caribbean.  EMN and OFC errors (top), 

DET and OFC (middle), and DET and EMN (bottom) are given as a function of 
forecast interval (h).  The positive (negative) bar values identify statistically 

significant (not significant) differences as defined by the labels in each panel. 

 
Figure 28.   Normal probability distribution functions for the 24-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b) 

e) 
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Figure 29.   Normal probability distribution functions for the 36-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 30.   Normal probability distribution functions for the 60-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b) 

a) b) 
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Figure 31.   Normal probability distribution functions for the 72-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 32.   Normal probability distribution functions for the 96-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b)

a) b) 
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Figure 33.   Normal probability distribution functions for the 108-h forecast ATEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative ATEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 34.   Normal probability distribution functions for the 12-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b) 

a) b) 
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Figure 35.   Normal probability distribution functions for the 36-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 36.   Normal probability distribution functions for the 48-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b)

a) b) 
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Figure 37.   Normal probability distribution functions for the 60-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 38.   Normal probability distribution functions for the 72-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b)

a) b)
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Figure 39.   Normal probability distribution functions for the 84-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

 
Figure 40.   Normal probability distribution functions for the 96-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b)

a) b) 
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Figure 41.   Normal probability distribution functions for the 108-h forecast XTEs by 

the (a) EMN and (b) OFC for the group of All Models.  The abscissa is the 
positive or negative XTEs in kilometers, and the ordinate represents 

frequency of occurrence.  Curves are color-coded by region (see box) with 
the mean, standard deviation, and number of members shown in the 

legend.    

a) b) 
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